Metallic Bonding - Questions by Topic

Q1.

Question number	Answer	Mark		
	The only correct answer is C (ions and delocalised electrons)	(1)		
	A is incorrect because this is ionic bonding			
	B is incorrect because atoms do not attract delocalised electrons			
	D is incorrect because this is covalent bonding			

Q2.

Question number	Answer	Additional guidance	Mark
(a)		Example of diagram:	1
	dot-and-cross diagram, including charges	Allow no electrons or 8 electrons on outer shell of Mg Allow any combination of dots or crosses for electrons Ignore missing square brackets	

Question number	Answer		Additional guidance	Mark
(b)	An explanation that makes reference to the following points:			3
	identification of charge carriers: magnesium - electrons and magnesium chloride - ions	(1)		
	magnesium conducts electricity when solid because delocalised electrons can flow through	(1)		
	magnesium chloride does not conduct when solid because the ions cannot move and it does conduct electricity when molten or dissolved in water as the ions can move.	(1)		

Question number	Answer	Additional guidance	Mark
(c)(i)		Examples of equation:	1
	correct balanced ionic equation with state symbols	$MgO(s) + 2H^{+}(aq) \rightarrow Mg^{2+}(aq) + H_{2}O(l)$ or $MgO(s) + 2H_{3}O^{+}(aq) \rightarrow Mg^{2+}(aq) + 2H_{2}O(l)$	

Question number	Answer	Additional guidance	Mark
(c)(ii)		Example of calculation:	3
	calculation of moles of MgO (1)	moles MgO = $\frac{2.45}{40.3}$ = 0.060794	
	calculation of moles of HCl (1)	moles HCl = 2 × 0.060794 = 0.121588	
	calculation of volume of HCl (1)	60.794 cm ³	
		Ignore SF except 1 SF	
		Allow use of A _r (Mg) = 24 (61.25 cm ³)	
		Correct answer with no working scores full marks	

Question number	Answer		Additional guidance	Mark
(d)	Either		Example of calculation:	2
		(1)	moles $MgCO_3 = \frac{2.25}{84.3} = 0.02669$	
	calculation of mass of MgCl ₂	(1)	mass $MgCl_2 = 0.02669 \times 95.3 = 2.5436$ (g)	
	or		or	
	use of both molar (masses	(1)	84.3 g MgCO ₃ makes 95.3 g MgCl ₂	
	calculation of mass of MgCl ₂	(1)	so 2.25 g MgCO $_3$ makes $95.3 \times 2.25 = 2.5436$ (g) MgCl $_2$ 84.3	
			Ignore SF except 1 SF	
			Allow use of $A_r(Mg) = 24 (2.5446 g)$	
			Correct answer with no working scores full marks	

Question number	Answer	Additional guidance	Mark
(e)	An explanation that makes reference to the following points:	Ignore calculations	2
	(in the reaction with magnesium oxide) there are fewer waste products/no carbon dioxide is released/water is the only waste product	1) Allow reverse arguments	
	so the molar mass of all products is lower/the denominator of the equation for atom economy is lower	1)	
	or		
	1 mol of magnesium compound produces 1 mol of magnesium chloride	1)	
	 but the M_r of magnesium carbonate is greater than the M_r of magnesium oxide/carbon dioxide is an additional waste product from magnesium carbonate. 	1)	